Haskell for Numerics?

Introduction

Summary

Back in January, a colleague pointed out to me that GHC did not produce very efficient code for performing floating point abs. I have yet to produce a write-up of my notes about hacking on GHC: in summary it wasn’t as difficult as I had feared and the #ghc folks were extremely helpful.

But maybe getting GHC to produce high performance numerical code is “swimming uphill”. Below is a comparison of a “state of the art” numerical language, Julia, and an alternative Haskell approach, using a Haskell domain-specific embedded language (DSEL), accelerate. The problem is a real one albeit quite simple from a programming point of view and should therefore be taken with some grains of salt.

A bit more background

The reason for improving GHC’s (numerical) performance is that I’d like to have a fast way of performing statistical inference either via Hamiltonian Monte Carlo or Sequential Monte Carlo. Stan is my “go to” tool for offline analysis but its inference engine is fixed and according to Fast Forward Labs: “it’s very awkward to productize”. What one would really like is the ability to choose and compose inference methods like can be done in monad-bayes. Although I haven’t compared monad-bayes and Stan in very much depth, the latter seems faster in my very limited experience.

The view of one of the folks that’s worked hard on making Haskell a great tool for doing numerical applications is that trying to get GHC to produce llvm on which tools like polly can work is “swimming up hill”.

A lot of people who work on numerical problems use matlab but it seems like if you want to put the code into production then you have to re-write it. Julia is an attempt to improve this situation and also provide higher performance.

A sort of manifesto

To summarise: what we’d like is type-safe blazingly fast numerical code. Type-safe can give us e.g. static guarantees that matrix multiplication is between compatible matrices and assurances that the units are correct. Here’s an example of static typing helping ensure the correctness of Kalman filter usage and here’s a package that I have used successfully on a medium-sized project to ensure all units are correct.

Symplectic Integrators

Let’s take a simple solver, encode it in Haskell and Julia and see how well we can do.

> {-# OPTIONS_GHC -Wall                   #-}
> {-# OPTIONS_GHC -fno-warn-type-defaults #-}
> 
> {-# LANGUAGE FlexibleContexts #-}
> {-# LANGUAGE TypeOperators    #-}
> module Symplectic (
>     runSteps
>   , runSteps'
>   , reallyRunSteps'
>   , inits
>   , h
>   , bigH1
>   , hs
>   , nabla1
>   , nabla2
>   , runStepsH98
>   , bigH2BodyH98
>   ) where
> 
> import Data.Number.Symbolic
> import Numeric.AD
> import Prelude                            as P
> import Data.Array.Accelerate              as A   hiding ((^))
> import Data.Array.Accelerate.LLVM.Native  as CPU
> import Data.Array.Accelerate.Linear              hiding (trace)
> import Data.Array.Accelerate.Control.Lens
> import qualified Linear                   as L

The Störmer-Verlet scheme is an implicit symplectic method of order 2. Being symplectic is important as it preserves the energy of the systems being solved. If, for example, we were to use RK4 to simulate planetary motion then the planets would either crash into the sun or leave the solar system: not a very accurate representation of reality.

\displaystyle   \begin{aligned}  p_{n+1 / 2} &= p_n         - \frac{h}{2}\nabla_q H(p_{n+1 / 2}, q_n) \\  q_{n+1}     &= q_n         + \frac{h}{2}(\nabla_p H(p_{n+1 / 2}, q_n) + \nabla_p H(p_{n+1 / 2}, q_{n+1}) \\  p_{n+1}     &= p_{n+1 / 2} - \frac{h}{2}\nabla_q H(p_{n+1 / 2}, q_{n+1})  \end{aligned}

Let’s assume that the Hamiltonian is of the form H(p, q) = T(q) + V(p) then this becomes an explicit scheme.

\displaystyle   \begin{aligned}  p_{n+1 / 2} &= p_n         - \frac{h}{2}\nabla_q T(q_n) \\  q_{n+1}     &= q_n         + \frac{h}{2}(\nabla_p V(p_{n+1 / 2}) + \nabla_q V(p_{n+1 / 2})) \\  p_{n+1}     &= p_{n+1 / 2} - \frac{h}{2}\nabla_q T(q_{n+1})  \end{aligned}

Simple Pendulum

Consider the following Hamiltonian for the pendulum:

\displaystyle   H(q,p) = \frac{1}{2}p^2 - \cos q

> bigH1 :: P.Floating a => a -> a -> a
> bigH1 q p = p^2 / 2 - cos q
> ham1 :: P.Floating a => [a] -> a
> ham1 [qq1, pp1] = 0.5 * pp1^2 - cos qq1
> ham1 _ = error "Hamiltonian defined for 2 generalized co-ordinates only"

Although it is trivial to find the derivatives in this case, let us check using automatic symbolic differentiation

> q1, q2, p1, p2 :: Sym a
> q1 = var "q1"
> q2 = var "q2"
> p1 = var "p1"
> p2 = var "p2"
> nabla1 :: [[Sym Double]]
> nabla1 = jacobian ((\x -> [x]) . ham1) [q1, p1]
ghci> nabla1
  [[sin q1,0.5*p1+0.5*p1]]

which after a bit of simplification gives us \nabla_q T(q) = \sin q and \nabla_p V(p) = p or

> nablaQ, nablaP :: P.Floating a => a -> a
> nablaQ = sin
> nablaP = id

One step of the Störmer-Verlet

> oneStep :: P.Floating a => (a -> a) ->
>                                  (a -> a) ->
>                                  a ->
>                                  (a, a) ->
>                                  (a, a)
> oneStep nabalQQ nablaPP hh (qPrev, pPrev) = (qNew, pNew)
>   where
>     h2 = hh / 2
>     pp2 = pPrev - h2 * nabalQQ qPrev
>     qNew = qPrev + hh * nablaPP pp2
>     pNew = pp2 - h2 * nabalQQ qNew
> h :: Double
> h = 0.01
> hs :: (Double, Double) -> [(Double, Double)]
> hs = P.iterate (oneStep nablaQ nablaP h)

We can check that the energy is conserved directly

ghci> P.map (P.uncurry bigH1) $ P.take 5 $               hs (pi/4, 0.0)
  [-0.7071067811865476,-0.7071067816284917,-0.7071067829543561,-0.7071067851642338,-0.7071067882582796]

ghci> P.map (P.uncurry bigH1) $ P.take 5 $ P.drop 1000 $ hs (pi/4, 0.0)
  [-0.7071069557227465,-0.7071069737863691,-0.7071069927439544,-0.7071070125961187,-0.7071070333434369]

Two body problem

Newton’s equations of motions for the two body problem are

\displaystyle   \ddot{q}_1 = -\frac{x}{(x^2 + y^2)^{3/2}}, \quad  \ddot{q}_2 = -\frac{y}{(x^2 + y^2)^{3/2}}

And we can re-write those to use Hamilton’s equations with this Hamiltonian

\displaystyle   H(p_1,p_2,q_1,q_2) = \frac{1}{2}(p_1^2 +p_2^2) - \frac{1}{\sqrt{q_1^2 + q_2^2}}

The advantage of using this small example is that we know the exact solution should we need it.

> ham2 :: P.Floating a => [a] -> a
> ham2 [qq1, qq2, pp1, pp2] = 0.5 * (pp1^2 + pp2^2) - recip (sqrt (qq1^2 + qq2^2))
> ham2 _ = error "Hamiltonian defined for 4 generalized co-ordinates only"

Again we can calculate the derivatives

> nabla2 :: [[Sym Double]]
> nabla2 = jacobian ((\x -> [x]) . ham2) [q1, q2, p1, p2]
ghci> (P.mapM_ . P.mapM_) putStrLn . P.map (P.map show) $ nabla2
  q1/(2.0*sqrt (q1*q1+q2*q2))/sqrt (q1*q1+q2*q2)/sqrt (q1*q1+q2*q2)+q1/(2.0*sqrt (q1*q1+q2*q2))/sqrt (q1*q1+q2*q2)/sqrt (q1*q1+q2*q2)
  q2/(2.0*sqrt (q1*q1+q2*q2))/sqrt (q1*q1+q2*q2)/sqrt (q1*q1+q2*q2)+q2/(2.0*sqrt (q1*q1+q2*q2))/sqrt (q1*q1+q2*q2)/sqrt (q1*q1+q2*q2)
  0.5*p1+0.5*p1
  0.5*p2+0.5*p2

which after some simplification becomes

\displaystyle   \begin{matrix}  \frac{q_1}{(q_1^2 + q_2^2)^{3/2}} \\  \frac{q_2}{(q_1^2 + q_2^2)^{3/2}} \\  p_1 \\  p_2  \end{matrix}

Here’s one step of Störmer-Verlet using Haskell 98.

> oneStepH98 :: Double -> V2 (V2 Double) -> V2 (V2 Double)
> oneStepH98 hh prev = V2 qNew pNew
>   where
>     h2 = hh / 2
>     hhs = V2 hh hh
>     hh2s = V2 h2 h2
>     pp2 = psPrev - hh2s * nablaQ' qsPrev
>     qNew = qsPrev + hhs * nablaP' pp2
>     pNew = pp2 - hh2s * nablaQ' qNew
>     qsPrev = prev ^. L._x
>     psPrev = prev ^. L._y
>     nablaQ' qs = V2 (qq1 / r) (qq2 / r)
>       where
>         qq1 = qs ^. L._x
>         qq2 = qs ^. L._y
>         r   = (qq1 ^ 2 + qq2 ^ 2) ** (3/2)
>     nablaP' ps = ps

And here is the same thing using accelerate.

> oneStep2 :: Double -> Exp (V2 (V2 Double)) -> Exp (V2 (V2 Double))
> oneStep2 hh prev = lift $ V2 qNew pNew
>   where
>     h2 = hh / 2
>     hhs = lift $ V2 hh hh
>     hh2s = lift $ V2 h2 h2
>     pp2 = psPrev - hh2s * nablaQ' qsPrev
>     qNew = qsPrev + hhs * nablaP' pp2
>     pNew = pp2 - hh2s * nablaQ' qNew
>     qsPrev :: Exp (V2 Double)
>     qsPrev = prev ^. _x
>     psPrev = prev ^. _y
>     nablaQ' :: Exp (V2 Double) -> Exp (V2 Double)
>     nablaQ' qs = lift (V2 (qq1 / r) (qq2 / r))
>       where
>         qq1 = qs ^. _x
>         qq2 = qs ^. _y
>         r   = (qq1 ^ 2 + qq2 ^ 2) ** (3/2)
>     nablaP' :: Exp (V2 Double) -> Exp (V2 Double)
>     nablaP' ps = ps

With initial values below the solution is an ellipse with eccentricity e.

> e, q10, q20, p10, p20 :: Double
> e = 0.6
> q10 = 1 - e
> q20 = 0.0
> p10 = 0.0
> p20 = sqrt ((1 + e) / (1 - e))
> initsH98 :: V2 (V2 Double)
> initsH98 = V2 (V2 q10 q20) (V2 p10 p20)
> 
> inits :: Exp (V2 (V2 Double))
> inits = lift initsH98

We can either keep all the steps of the simulation using accelerate and the CPU

> nSteps :: Int
> nSteps = 10000
> 
> dummyInputs :: Acc (Array DIM1 (V2 (V2 Double)))
> dummyInputs = A.use $ A.fromList (Z :. nSteps) $
>                P.replicate nSteps (V2 (V2 0.0 0.0) (V2 0.0 0.0))
> runSteps :: Array DIM1 (V2 (V2 Double))
> runSteps = CPU.run $ A.scanl (\s _x -> (oneStep2 h s)) inits dummyInputs

Or we can do the same in plain Haskell

> dummyInputsH98 :: [V2 (V2 Double)]
> dummyInputsH98 = P.replicate nSteps (V2 (V2 0.0 0.0) (V2 0.0 0.0))
> runStepsH98 :: [V2 (V2 Double)]
> runStepsH98= P.scanl (\s _x -> (oneStepH98 h s)) initsH98 dummyInputsH98

The fact that the phase diagram for the two objects is periodic is encouraging.

And again we can check directly that the energy is conserved.

> bigH2BodyH98 :: V2 (V2 Double) -> Double
> bigH2BodyH98 z = ke + pe
>   where
>     q = z ^. L._x
>     p = z ^. L._y
>     pe = let V2 q1' q2' = q in negate $ recip (sqrt (q1'^2 + q2'^2))
>     ke = let V2 p1' p2' = p in 0.5 * (p1'^2 + p2'^2)
ghci> P.maximum $ P.map bigH2BodyH98 $ P.take 100 $ P.drop 1000 runStepsH98
  -0.49964056333352014

ghci> P.minimum $ P.map bigH2BodyH98 $ P.take 100 $ P.drop 1000 runStepsH98
  -0.49964155784917147

We’d like to measure performance and running the above for many steps might use up all available memory. Let’s confine ourselves to looking at the final result.

> runSteps' :: Int -> Exp (V2 (V2 Double)) -> Exp (V2 (V2 Double))
> runSteps' nSteps = A.iterate (lift nSteps) (oneStep2 h)
> reallyRunSteps' :: Int -> Array DIM1 (V2 (V2 Double))
> reallyRunSteps' nSteps = CPU.run $
>                          A.scanl (\s _x -> runSteps' nSteps s) inits
>                          (A.use $ A.fromList (Z :. 1) [V2 (V2 0.0 0.0) (V2 0.0 0.0)])

Performance

Accelerate’s LLVM

Let’s see what accelerate generates with

{-# OPTIONS_GHC -Wall                      #-}
{-# OPTIONS_GHC -fno-warn-name-shadowing   #-}
{-# OPTIONS_GHC -fno-warn-type-defaults    #-}
{-# OPTIONS_GHC -fno-warn-unused-do-bind   #-}
{-# OPTIONS_GHC -fno-warn-missing-methods  #-}
{-# OPTIONS_GHC -fno-warn-orphans          #-}

import Symplectic

main :: IO ()
main = do
  putStrLn $ show $ reallyRunSteps' 100000000

It’s a bit verbose but we can look at the key “loop”: while5.

[   0.023] llvm: generated 102 instructions in 10 blocks
[   0.023] llvm: generated 127 instructions in 15 blocks
[   0.023] llvm: generated 86 instructions in 7 blocks
[   0.024] llvm: generated 84 instructions in 7 blocks
[   0.024] llvm: generated 18 instructions in 4 blocks
[   0.071] llvm: optimisation did work? True
[   0.072] ; ModuleID = 'scanS'
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-darwin15.5.0"

@.memset_pattern = private unnamed_addr constant [2 x double] [double 2.000000e+00, double 2.000000e+00], align 16
@.memset_pattern.1 = private unnamed_addr constant [2 x double] [double 4.000000e-01, double 4.000000e-01], align 16

; Function Attrs: nounwind
define void @scanS(i64 %ix.start, i64 %ix.end, double* noalias nocapture %out.ad3, double* noalias nocapture %out.ad2, double* noalias nocapture %out.ad1, double* noalias nocapture %out.ad0, i64 %out.sh0, double* noalias nocapture readnone %fv0.ad3, double* noalias nocapture readnone %fv0.ad2, double* noalias nocapture readnone %fv0.ad1, double* noalias nocapture readnone %fv0.ad0, i64 %fv0.sh0) local_unnamed_addr #0 {
entry:
  %0 = add i64 %fv0.sh0, 1
  %1 = icmp slt i64 %ix.start, %ix.end
  br i1 %1, label %while1.top.preheader, label %while1.exit

while1.top.preheader:                             ; preds = %entry
  %2 = add i64 %ix.start, 1
  %3 = mul i64 %2, %fv0.sh0
  br label %while1.top

while1.top:                                       ; preds = %while3.exit, %while1.top.preheader
  %indvars.iv = phi i64 [ %3, %while1.top.preheader ], [ %indvars.iv.next, %while3.exit ]
  %4 = phi i64 [ %ix.start, %while1.top.preheader ], [ %52, %while3.exit ]
  %5 = mul i64 %4, %fv0.sh0
  %6 = mul i64 %4, %0
  %7 = getelementptr double, double* %out.ad0, i64 %6
  store double 2.000000e+00, double* %7, align 8
  %8 = getelementptr double, double* %out.ad1, i64 %6
  store double 0.000000e+00, double* %8, align 8
  %9 = getelementptr double, double* %out.ad2, i64 %6
  store double 0.000000e+00, double* %9, align 8
  %10 = getelementptr double, double* %out.ad3, i64 %6
  store double 4.000000e-01, double* %10, align 8
  %11 = add i64 %5, %fv0.sh0
  %12 = icmp slt i64 %5, %11
  br i1 %12, label %while3.top.preheader, label %while3.exit

while3.top.preheader:                             ; preds = %while1.top
  br label %while3.top

while3.top:                                       ; preds = %while3.top.preheader, %while5.exit
  %.in = phi i64 [ %44, %while5.exit ], [ %6, %while3.top.preheader ]
  %13 = phi i64 [ %51, %while5.exit ], [ %5, %while3.top.preheader ]
  %14 = phi <2 x double> [ %43, %while5.exit ], [ <double 2.000000e+00, double 0.000000e+00>, %while3.top.preheader ]
  %15 = phi <2 x double> [ %32, %while5.exit ], [ <double 0.000000e+00, double 4.000000e-01>, %while3.top.preheader ]
  br label %while5.top

while5.top:                                       ; preds = %while5.top, %while3.top
  %16 = phi i64 [ 0, %while3.top ], [ %19, %while5.top ]
  %17 = phi <2 x double> [ %14, %while3.top ], [ %43, %while5.top ]
  %18 = phi <2 x double> [ %15, %while3.top ], [ %32, %while5.top ]
  %19 = add nuw nsw i64 %16, 1
  %20 = extractelement <2 x double> %18, i32 1
  %21 = fmul fast double %20, %20
  %22 = extractelement <2 x double> %18, i32 0
  %23 = fmul fast double %22, %22
  %24 = fadd fast double %21, %23
  %25 = tail call double @llvm.pow.f64(double %24, double 1.500000e+00) #2
  %26 = insertelement <2 x double> undef, double %25, i32 0
  %27 = shufflevector <2 x double> %26, <2 x double> undef, <2 x i32> zeroinitializer
  %28 = fdiv fast <2 x double> %18, %27
  %29 = fmul fast <2 x double> %28, <double 5.000000e-03, double 5.000000e-03>
  %30 = fsub fast <2 x double> %17, %29
  %31 = fmul fast <2 x double> %30, <double 1.000000e-02, double 1.000000e-02>
  %32 = fadd fast <2 x double> %31, %18
  %33 = extractelement <2 x double> %32, i32 1
  %34 = fmul fast double %33, %33
  %35 = extractelement <2 x double> %32, i32 0
  %36 = fmul fast double %35, %35
  %37 = fadd fast double %34, %36
  %38 = tail call double @llvm.pow.f64(double %37, double 1.500000e+00) #2
  %39 = insertelement <2 x double> undef, double %38, i32 0
  %40 = shufflevector <2 x double> %39, <2 x double> undef, <2 x i32> zeroinitializer
  %41 = fdiv fast <2 x double> %32, %40
  %42 = fmul fast <2 x double> %41, <double 5.000000e-03, double 5.000000e-03>
  %43 = fsub fast <2 x double> %30, %42
  %exitcond = icmp eq i64 %19, 100000000
  br i1 %exitcond, label %while5.exit, label %while5.top

while5.exit:                                      ; preds = %while5.top
  %44 = add i64 %.in, 1
  %45 = getelementptr double, double* %out.ad0, i64 %44
  %46 = extractelement <2 x double> %43, i32 0
  store double %46, double* %45, align 8
  %47 = getelementptr double, double* %out.ad1, i64 %44
  %48 = extractelement <2 x double> %43, i32 1
  store double %48, double* %47, align 8
  %49 = getelementptr double, double* %out.ad2, i64 %44
  store double %35, double* %49, align 8
  %50 = getelementptr double, double* %out.ad3, i64 %44
  store double %33, double* %50, align 8
  %51 = add i64 %13, 1
  %exitcond7 = icmp eq i64 %51, %indvars.iv
  br i1 %exitcond7, label %while3.exit.loopexit, label %while3.top

while3.exit.loopexit:                             ; preds = %while5.exit
  br label %while3.exit

while3.exit:                                      ; preds = %while3.exit.loopexit, %while1.top
  %52 = add nsw i64 %4, 1
  %indvars.iv.next = add i64 %indvars.iv, %fv0.sh0
  %exitcond8 = icmp eq i64 %52, %ix.end
  br i1 %exitcond8, label %while1.exit.loopexit, label %while1.top

while1.exit.loopexit:                             ; preds = %while3.exit
  br label %while1.exit

while1.exit:                                      ; preds = %while1.exit.loopexit, %entry
  ret void
}

; Function Attrs: nounwind
define void @scanP1(i64 %ix.start, i64 %ix.end, i64 %ix.stride, i64 %ix.steps, double* noalias nocapture %out.ad3, double* noalias nocapture %out.ad2, double* noalias nocapture %out.ad1, double* noalias nocapture %out.ad0, i64 %out.sh0, double* noalias nocapture %tmp.ad3, double* noalias nocapture %tmp.ad2, double* noalias nocapture %tmp.ad1, double* noalias nocapture %tmp.ad0, i64 %tmp.sh0, double* noalias nocapture readonly %fv0.ad3, double* noalias nocapture readonly %fv0.ad2, double* noalias nocapture readonly %fv0.ad1, double* noalias nocapture readonly %fv0.ad0, i64 %fv0.sh0) local_unnamed_addr #0 {
entry:
  %0 = mul i64 %ix.stride, %ix.start
  %1 = add i64 %0, %ix.stride
  %2 = icmp sle i64 %1, %fv0.sh0
  %3 = select i1 %2, i64 %1, i64 %fv0.sh0
  %4 = icmp eq i64 %ix.start, 0
  %5 = add i64 %0, 1
  %6 = select i1 %4, i64 %0, i64 %5
  br i1 %4, label %if5.exit, label %if5.else

if5.else:                                         ; preds = %entry
  %7 = getelementptr double, double* %fv0.ad3, i64 %0
  %8 = load double, double* %7, align 8
  %9 = getelementptr double, double* %fv0.ad2, i64 %0
  %10 = load double, double* %9, align 8
  %11 = getelementptr double, double* %fv0.ad1, i64 %0
  %12 = load double, double* %11, align 8
  %13 = getelementptr double, double* %fv0.ad0, i64 %0
  %14 = load double, double* %13, align 8
  %15 = insertelement <2 x double> undef, double %14, i32 0
  %16 = insertelement <2 x double> %15, double %12, i32 1
  %17 = insertelement <2 x double> undef, double %10, i32 0
  %18 = insertelement <2 x double> %17, double %8, i32 1
  br label %if5.exit

if5.exit:                                         ; preds = %entry, %if5.else
  %19 = phi i64 [ %5, %if5.else ], [ %0, %entry ]
  %20 = phi <2 x double> [ %16, %if5.else ], [ <double 2.000000e+00, double 0.000000e+00>, %entry ]
  %21 = phi <2 x double> [ %18, %if5.else ], [ <double 0.000000e+00, double 4.000000e-01>, %entry ]
  %22 = getelementptr double, double* %out.ad0, i64 %6
  %23 = extractelement <2 x double> %20, i32 0
  store double %23, double* %22, align 8
  %24 = getelementptr double, double* %out.ad1, i64 %6
  %25 = extractelement <2 x double> %20, i32 1
  store double %25, double* %24, align 8
  %26 = getelementptr double, double* %out.ad2, i64 %6
  %27 = extractelement <2 x double> %21, i32 0
  store double %27, double* %26, align 8
  %28 = getelementptr double, double* %out.ad3, i64 %6
  %29 = extractelement <2 x double> %21, i32 1
  store double %29, double* %28, align 8
  %30 = icmp slt i64 %19, %3
  br i1 %30, label %while9.top.preheader, label %while9.exit

while9.top.preheader:                             ; preds = %if5.exit
  br label %while9.top

while9.top:                                       ; preds = %while9.top.preheader, %while11.exit
  %.in = phi i64 [ %62, %while11.exit ], [ %6, %while9.top.preheader ]
  %31 = phi i64 [ %69, %while11.exit ], [ %19, %while9.top.preheader ]
  %32 = phi <2 x double> [ %61, %while11.exit ], [ %20, %while9.top.preheader ]
  %33 = phi <2 x double> [ %50, %while11.exit ], [ %21, %while9.top.preheader ]
  br label %while11.top

while11.top:                                      ; preds = %while11.top, %while9.top
  %34 = phi i64 [ 0, %while9.top ], [ %37, %while11.top ]
  %35 = phi <2 x double> [ %32, %while9.top ], [ %61, %while11.top ]
  %36 = phi <2 x double> [ %33, %while9.top ], [ %50, %while11.top ]
  %37 = add nuw nsw i64 %34, 1
  %38 = extractelement <2 x double> %36, i32 1
  %39 = fmul fast double %38, %38
  %40 = extractelement <2 x double> %36, i32 0
  %41 = fmul fast double %40, %40
  %42 = fadd fast double %39, %41
  %43 = tail call double @llvm.pow.f64(double %42, double 1.500000e+00) #2
  %44 = insertelement <2 x double> undef, double %43, i32 0
  %45 = shufflevector <2 x double> %44, <2 x double> undef, <2 x i32> zeroinitializer
  %46 = fdiv fast <2 x double> %36, %45
  %47 = fmul fast <2 x double> %46, <double 5.000000e-03, double 5.000000e-03>
  %48 = fsub fast <2 x double> %35, %47
  %49 = fmul fast <2 x double> %48, <double 1.000000e-02, double 1.000000e-02>
  %50 = fadd fast <2 x double> %49, %36
  %51 = extractelement <2 x double> %50, i32 1
  %52 = fmul fast double %51, %51
  %53 = extractelement <2 x double> %50, i32 0
  %54 = fmul fast double %53, %53
  %55 = fadd fast double %52, %54
  %56 = tail call double @llvm.pow.f64(double %55, double 1.500000e+00) #2
  %57 = insertelement <2 x double> undef, double %56, i32 0
  %58 = shufflevector <2 x double> %57, <2 x double> undef, <2 x i32> zeroinitializer
  %59 = fdiv fast <2 x double> %50, %58
  %60 = fmul fast <2 x double> %59, <double 5.000000e-03, double 5.000000e-03>
  %61 = fsub fast <2 x double> %48, %60
  %exitcond = icmp eq i64 %37, 100000000
  br i1 %exitcond, label %while11.exit, label %while11.top

while11.exit:                                     ; preds = %while11.top
  %62 = add i64 %.in, 1
  %63 = getelementptr double, double* %out.ad0, i64 %62
  %64 = extractelement <2 x double> %61, i32 0
  store double %64, double* %63, align 8
  %65 = getelementptr double, double* %out.ad1, i64 %62
  %66 = extractelement <2 x double> %61, i32 1
  store double %66, double* %65, align 8
  %67 = getelementptr double, double* %out.ad2, i64 %62
  store double %53, double* %67, align 8
  %68 = getelementptr double, double* %out.ad3, i64 %62
  store double %51, double* %68, align 8
  %69 = add nsw i64 %31, 1
  %70 = icmp slt i64 %69, %3
  br i1 %70, label %while9.top, label %while9.exit.loopexit

while9.exit.loopexit:                             ; preds = %while11.exit
  br label %while9.exit

while9.exit:                                      ; preds = %while9.exit.loopexit, %if5.exit
  %71 = phi <2 x double> [ %20, %if5.exit ], [ %61, %while9.exit.loopexit ]
  %72 = phi <2 x double> [ %21, %if5.exit ], [ %50, %while9.exit.loopexit ]
  %73 = getelementptr double, double* %tmp.ad0, i64 %ix.start
  %74 = extractelement <2 x double> %71, i32 0
  store double %74, double* %73, align 8
  %75 = getelementptr double, double* %tmp.ad1, i64 %ix.start
  %76 = extractelement <2 x double> %71, i32 1
  store double %76, double* %75, align 8
  %77 = getelementptr double, double* %tmp.ad2, i64 %ix.start
  %78 = extractelement <2 x double> %72, i32 0
  store double %78, double* %77, align 8
  %79 = getelementptr double, double* %tmp.ad3, i64 %ix.start
  %80 = extractelement <2 x double> %72, i32 1
  store double %80, double* %79, align 8
  ret void
}

; Function Attrs: nounwind
define void @scanP2(i64 %ix.start, i64 %ix.end, double* noalias nocapture %tmp.ad3, double* noalias nocapture %tmp.ad2, double* noalias nocapture %tmp.ad1, double* noalias nocapture %tmp.ad0, i64 %tmp.sh0, double* noalias nocapture readnone %fv0.ad3, double* noalias nocapture readnone %fv0.ad2, double* noalias nocapture readnone %fv0.ad1, double* noalias nocapture readnone %fv0.ad0, i64 %fv0.sh0) local_unnamed_addr #0 {
entry:
  %0 = add i64 %ix.start, 1
  %1 = icmp slt i64 %0, %ix.end
  br i1 %1, label %while1.top.preheader, label %while1.exit

while1.top.preheader:                             ; preds = %entry
  %2 = getelementptr double, double* %tmp.ad3, i64 %ix.start
  %3 = load double, double* %2, align 8
  %4 = getelementptr double, double* %tmp.ad2, i64 %ix.start
  %5 = load double, double* %4, align 8
  %6 = getelementptr double, double* %tmp.ad1, i64 %ix.start
  %7 = load double, double* %6, align 8
  %8 = getelementptr double, double* %tmp.ad0, i64 %ix.start
  %9 = load double, double* %8, align 8
  %10 = insertelement <2 x double> undef, double %5, i32 0
  %11 = insertelement <2 x double> %10, double %3, i32 1
  %12 = insertelement <2 x double> undef, double %9, i32 0
  %13 = insertelement <2 x double> %12, double %7, i32 1
  br label %while1.top

while1.top:                                       ; preds = %while3.exit, %while1.top.preheader
  %14 = phi i64 [ %45, %while3.exit ], [ %0, %while1.top.preheader ]
  %15 = phi <2 x double> [ %44, %while3.exit ], [ %13, %while1.top.preheader ]
  %16 = phi <2 x double> [ %33, %while3.exit ], [ %11, %while1.top.preheader ]
  br label %while3.top

while3.top:                                       ; preds = %while3.top, %while1.top
  %17 = phi i64 [ 0, %while1.top ], [ %20, %while3.top ]
  %18 = phi <2 x double> [ %15, %while1.top ], [ %44, %while3.top ]
  %19 = phi <2 x double> [ %16, %while1.top ], [ %33, %while3.top ]
  %20 = add nuw nsw i64 %17, 1
  %21 = extractelement <2 x double> %19, i32 1
  %22 = fmul fast double %21, %21
  %23 = extractelement <2 x double> %19, i32 0
  %24 = fmul fast double %23, %23
  %25 = fadd fast double %22, %24
  %26 = tail call double @llvm.pow.f64(double %25, double 1.500000e+00) #2
  %27 = insertelement <2 x double> undef, double %26, i32 0
  %28 = shufflevector <2 x double> %27, <2 x double> undef, <2 x i32> zeroinitializer
  %29 = fdiv fast <2 x double> %19, %28
  %30 = fmul fast <2 x double> %29, <double 5.000000e-03, double 5.000000e-03>
  %31 = fsub fast <2 x double> %18, %30
  %32 = fmul fast <2 x double> %31, <double 1.000000e-02, double 1.000000e-02>
  %33 = fadd fast <2 x double> %32, %19
  %34 = extractelement <2 x double> %33, i32 1
  %35 = fmul fast double %34, %34
  %36 = extractelement <2 x double> %33, i32 0
  %37 = fmul fast double %36, %36
  %38 = fadd fast double %35, %37
  %39 = tail call double @llvm.pow.f64(double %38, double 1.500000e+00) #2
  %40 = insertelement <2 x double> undef, double %39, i32 0
  %41 = shufflevector <2 x double> %40, <2 x double> undef, <2 x i32> zeroinitializer
  %42 = fdiv fast <2 x double> %33, %41
  %43 = fmul fast <2 x double> %42, <double 5.000000e-03, double 5.000000e-03>
  %44 = fsub fast <2 x double> %31, %43
  %exitcond = icmp eq i64 %20, 100000000
  br i1 %exitcond, label %while3.exit, label %while3.top

while3.exit:                                      ; preds = %while3.top
  %45 = add i64 %14, 1
  %46 = getelementptr double, double* %tmp.ad0, i64 %14
  %47 = extractelement <2 x double> %44, i32 0
  store double %47, double* %46, align 8
  %48 = getelementptr double, double* %tmp.ad1, i64 %14
  %49 = extractelement <2 x double> %44, i32 1
  store double %49, double* %48, align 8
  %50 = getelementptr double, double* %tmp.ad2, i64 %14
  store double %36, double* %50, align 8
  %51 = getelementptr double, double* %tmp.ad3, i64 %14
  store double %34, double* %51, align 8
  %exitcond7 = icmp eq i64 %45, %ix.end
  br i1 %exitcond7, label %while1.exit.loopexit, label %while1.top

while1.exit.loopexit:                             ; preds = %while3.exit
  br label %while1.exit

while1.exit:                                      ; preds = %while1.exit.loopexit, %entry
  ret void
}

; Function Attrs: nounwind
define void @scanP3(i64 %ix.start, i64 %ix.end, i64 %ix.stride, double* noalias nocapture %out.ad3, double* noalias nocapture %out.ad2, double* noalias nocapture %out.ad1, double* noalias nocapture %out.ad0, i64 %out.sh0, double* noalias nocapture readonly %tmp.ad3, double* noalias nocapture readonly %tmp.ad2, double* noalias nocapture readonly %tmp.ad1, double* noalias nocapture readonly %tmp.ad0, i64 %tmp.sh0, double* noalias nocapture readnone %fv0.ad3, double* noalias nocapture readnone %fv0.ad2, double* noalias nocapture readnone %fv0.ad1, double* noalias nocapture readnone %fv0.ad0, i64 %fv0.sh0) local_unnamed_addr #0 {
entry:
  %0 = add i64 %ix.start, 1
  %1 = mul i64 %0, %ix.stride
  %2 = add i64 %1, %ix.stride
  %3 = icmp sle i64 %2, %out.sh0
  %4 = select i1 %3, i64 %2, i64 %out.sh0
  %5 = add i64 %1, 1
  %6 = add i64 %4, 1
  %7 = icmp slt i64 %5, %6
  br i1 %7, label %while1.top.preheader, label %while1.exit

while1.top.preheader:                             ; preds = %entry
  %8 = getelementptr double, double* %tmp.ad0, i64 %ix.start
  %9 = load double, double* %8, align 8
  %10 = getelementptr double, double* %tmp.ad1, i64 %ix.start
  %11 = load double, double* %10, align 8
  %12 = getelementptr double, double* %tmp.ad2, i64 %ix.start
  %13 = load double, double* %12, align 8
  %14 = getelementptr double, double* %tmp.ad3, i64 %ix.start
  %15 = load double, double* %14, align 8
  %16 = insertelement <2 x double> undef, double %9, i32 0
  %17 = insertelement <2 x double> %16, double %11, i32 1
  %18 = insertelement <2 x double> undef, double %13, i32 0
  %19 = insertelement <2 x double> %18, double %15, i32 1
  br label %while1.top

while1.top:                                       ; preds = %while1.top.preheader, %while3.exit
  %20 = phi i64 [ %55, %while3.exit ], [ %5, %while1.top.preheader ]
  br label %while3.top

while3.top:                                       ; preds = %while3.top, %while1.top
  %21 = phi i64 [ 0, %while1.top ], [ %24, %while3.top ]
  %22 = phi <2 x double> [ %17, %while1.top ], [ %48, %while3.top ]
  %23 = phi <2 x double> [ %19, %while1.top ], [ %37, %while3.top ]
  %24 = add nuw nsw i64 %21, 1
  %25 = extractelement <2 x double> %23, i32 1
  %26 = fmul fast double %25, %25
  %27 = extractelement <2 x double> %23, i32 0
  %28 = fmul fast double %27, %27
  %29 = fadd fast double %26, %28
  %30 = tail call double @llvm.pow.f64(double %29, double 1.500000e+00) #2
  %31 = insertelement <2 x double> undef, double %30, i32 0
  %32 = shufflevector <2 x double> %31, <2 x double> undef, <2 x i32> zeroinitializer
  %33 = fdiv fast <2 x double> %23, %32
  %34 = fmul fast <2 x double> %33, <double 5.000000e-03, double 5.000000e-03>
  %35 = fsub fast <2 x double> %22, %34
  %36 = fmul fast <2 x double> %35, <double 1.000000e-02, double 1.000000e-02>
  %37 = fadd fast <2 x double> %36, %23
  %38 = extractelement <2 x double> %37, i32 1
  %39 = fmul fast double %38, %38
  %40 = extractelement <2 x double> %37, i32 0
  %41 = fmul fast double %40, %40
  %42 = fadd fast double %39, %41
  %43 = tail call double @llvm.pow.f64(double %42, double 1.500000e+00) #2
  %44 = insertelement <2 x double> undef, double %43, i32 0
  %45 = shufflevector <2 x double> %44, <2 x double> undef, <2 x i32> zeroinitializer
  %46 = fdiv fast <2 x double> %37, %45
  %47 = fmul fast <2 x double> %46, <double 5.000000e-03, double 5.000000e-03>
  %48 = fsub fast <2 x double> %35, %47
  %exitcond = icmp eq i64 %24, 100000000
  br i1 %exitcond, label %while3.exit, label %while3.top

while3.exit:                                      ; preds = %while3.top
  %49 = getelementptr double, double* %out.ad0, i64 %20
  %50 = extractelement <2 x double> %48, i32 0
  store double %50, double* %49, align 8
  %51 = getelementptr double, double* %out.ad1, i64 %20
  %52 = extractelement <2 x double> %48, i32 1
  store double %52, double* %51, align 8
  %53 = getelementptr double, double* %out.ad2, i64 %20
  store double %40, double* %53, align 8
  %54 = getelementptr double, double* %out.ad3, i64 %20
  store double %38, double* %54, align 8
  %55 = add i64 %20, 1
  %56 = icmp slt i64 %55, %6
  br i1 %56, label %while1.top, label %while1.exit.loopexit

while1.exit.loopexit:                             ; preds = %while3.exit
  br label %while1.exit

while1.exit:                                      ; preds = %while1.exit.loopexit, %entry
  ret void
}

; Function Attrs: norecurse nounwind
define void @generate(i64 %ix.start, i64 %ix.end, double* noalias nocapture %out.ad3, double* noalias nocapture %out.ad2, double* noalias nocapture %out.ad1, double* noalias nocapture %out.ad0, i64 %out.sh0, double* noalias nocapture readnone %fv0.ad3, double* noalias nocapture readnone %fv0.ad2, double* noalias nocapture readnone %fv0.ad1, double* noalias nocapture readnone %fv0.ad0, i64 %fv0.sh0) local_unnamed_addr #1 {
entry:
  %0 = icmp sgt i64 %ix.end, %ix.start
  br i1 %0, label %while1.top.preheader, label %while1.exit

while1.top.preheader:                             ; preds = %entry
  %scevgep = getelementptr double, double* %out.ad1, i64 %ix.start
  %scevgep1 = bitcast double* %scevgep to i8*
  %1 = sub i64 %ix.end, %ix.start
  %2 = shl i64 %1, 3
  call void @llvm.memset.p0i8.i64(i8* %scevgep1, i8 0, i64 %2, i32 8, i1 false)
  %scevgep2 = getelementptr double, double* %out.ad2, i64 %ix.start
  %scevgep23 = bitcast double* %scevgep2 to i8*
  call void @llvm.memset.p0i8.i64(i8* %scevgep23, i8 0, i64 %2, i32 8, i1 false)
  %scevgep4 = getelementptr double, double* %out.ad0, i64 %ix.start
  %scevgep45 = bitcast double* %scevgep4 to i8*
  call void @memset_pattern16(i8* %scevgep45, i8* bitcast ([2 x double]* @.memset_pattern to i8*), i64 %2) #0
  %scevgep6 = getelementptr double, double* %out.ad3, i64 %ix.start
  %scevgep67 = bitcast double* %scevgep6 to i8*
  call void @memset_pattern16(i8* %scevgep67, i8* bitcast ([2 x double]* @.memset_pattern.1 to i8*), i64 %2) #0
  br label %while1.exit

while1.exit:                                      ; preds = %while1.top.preheader, %entry
  ret void
}

; Function Attrs: nounwind readonly
declare double @llvm.pow.f64(double, double) #2

; Function Attrs: argmemonly nounwind
declare void @llvm.memset.p0i8.i64(i8* nocapture writeonly, i8, i64, i32, i1) #3

; Function Attrs: argmemonly
declare void @memset_pattern16(i8* nocapture, i8* nocapture readonly, i64) #4

attributes #0 = { nounwind }
attributes #1 = { norecurse nounwind }
attributes #2 = { nounwind readonly }
attributes #3 = { argmemonly nounwind }
attributes #4 = { argmemonly }

And then we can run it for 10^8 steps and see how long it takes.

       9,031,008 bytes allocated in the heap
       1,101,152 bytes copied during GC
         156,640 bytes maximum residency (2 sample(s))
          28,088 bytes maximum slop
               2 MB total memory in use (0 MB lost due to fragmentation)

                                     Tot time (elapsed)  Avg pause  Max pause
  Gen  0        16 colls,     0 par    0.002s   0.006s     0.0004s    0.0041s
  Gen  1         2 colls,     0 par    0.002s   0.099s     0.0496s    0.0990s

  INIT    time    0.000s  (  0.002s elapsed)
  MUT     time   10.195s  ( 10.501s elapsed)
  GC      time    0.004s  (  0.105s elapsed)
  EXIT    time    0.000s  (  0.000s elapsed)
  Total   time   10.206s  ( 10.608s elapsed)

  %GC     time       0.0%  (1.0% elapsed)

  Alloc rate    885,824 bytes per MUT second

  Productivity 100.0% of total user, 99.0% of total elapsed

Julia’s LLVM

Let’s try the same problem in Julia.

using StaticArrays

e = 0.6
q10 = 1 - e
q20 = 0.0
p10 = 0.0
p20 = sqrt((1 + e) / (1 - e))

h = 0.01

x1 = SVector{2,Float64}(q10, q20)
x2 = SVector{2,Float64}(p10, p20)
x3 = SVector{2,SVector{2,Float64}}(x1,x2)

@inline function oneStep(h, prev)
    h2 = h / 2
    @inbounds qsPrev = prev[1]
    @inbounds psPrev = prev[2]
    @inline function nablaQQ(qs)
        @inbounds q1 = qs[1]
        @inbounds q2 = qs[2]
        r = (q1^2 + q2^2) ^ (3/2)
        return SVector{2,Float64}(q1 / r, q2 / r)
    end
    @inline function nablaPP(ps)
        return ps
    end
    p2 = psPrev - h2 * nablaQQ(qsPrev)
    qNew = qsPrev + h * nablaPP(p2)
    pNew = p2 - h2 * nablaQQ(qNew)
    return SVector{2,SVector{2,Float64}}(qNew, pNew)
end

function manyStepsFinal(n,h,prev)
    for i in 1:n
        prev = oneStep(h,prev)
    end
    return prev
end

final = manyStepsFinal(100000000,h,x3)
print(final)

Again we can see how long it takes

       22.20 real        22.18 user         0.32 sys

Surprisingly it takes longer but I am Julia novice so it could be some rookie error. Two things occur to me:

  1. Let’s look at the llvm and see if we can we can find an explanation.

  2. Let’s analyse execution time versus number of steps to see what the code generation cost is and the execution cost. It may be that Julia takes longer to generate code but has better execution times.


define void @julia_oneStep_71735(%SVector.65* noalias sret, double, %SVector.65*) #0 {
top:
  %3 = fmul double %1, 5.000000e-01
  %4 = getelementptr inbounds %SVector.65, %SVector.65* %2, i64 0, i32 0, i64 0, i32 0, i64 0
  %5 = load double, double* %4, align 1
  %6 = getelementptr inbounds %SVector.65, %SVector.65* %2, i64 0, i32 0, i64 0, i32 0, i64 1
  %7 = load double, double* %6, align 1
  %8 = getelementptr inbounds %SVector.65, %SVector.65* %2, i64 0, i32 0, i64 1, i32 0, i64 0
  %9 = load double, double* %8, align 1
  %10 = getelementptr inbounds %SVector.65, %SVector.65* %2, i64 0, i32 0, i64 1, i32 0, i64 1
  %11 = load double, double* %10, align 1
  %12 = fmul double %5, %5
  %13 = fmul double %7, %7
  %14 = fadd double %12, %13
  %15 = call double @"julia_^_71741"(double %14, double 1.500000e+00) #0
  %16 = fdiv double %5, %15
  %17 = fdiv double %7, %15
  %18 = fmul double %3, %16
  %19 = fmul double %3, %17
  %20 = fsub double %9, %18
  %21 = fsub double %11, %19
  %22 = fmul double %20, %1
  %23 = fmul double %21, %1
  %24 = fadd double %5, %22
  %25 = fadd double %7, %23
  %26 = fmul double %24, %24
  %27 = fmul double %25, %25
  %28 = fadd double %26, %27
  %29 = call double @"julia_^_71741"(double %28, double 1.500000e+00) #0
  %30 = fdiv double %24, %29
  %31 = fdiv double %25, %29
  %32 = fmul double %3, %30
  %33 = fmul double %3, %31
  %34 = fsub double %20, %32
  %35 = fsub double %21, %33
  %36 = getelementptr inbounds %SVector.65, %SVector.65* %0, i64 0, i32 0, i64 0, i32 0, i64 0
  store double %24, double* %36, align 8
  %37 = getelementptr inbounds %SVector.65, %SVector.65* %0, i64 0, i32 0, i64 0, i32 0, i64 1
  store double %25, double* %37, align 8
  %38 = getelementptr inbounds %SVector.65, %SVector.65* %0, i64 0, i32 0, i64 1, i32 0, i64 0
  store double %34, double* %38, align 8
  %39 = getelementptr inbounds %SVector.65, %SVector.65* %0, i64 0, i32 0, i64 1, i32 0, i64 1
  store double %35, double* %39, align 8
  ret void
}
nothing

We can see two things:

  1. Julia doesn’t use SIMD by default. We can change this by using -O3. In the event (I don’t reproduce it here), this makes very little difference to performance.

  2. Julia generates

    %15 = call double @"julia_^_71741"(double %14, double 1.500000e+00) #0

    whereas GHC generates

    %26 = tail call double @llvm.pow.f64(double %25, double 1.500000e+00) #2

    Now it is entirely possible that this results in usage of different libMs, the Julia calling openlibm and GHC calling the system libm which on my machine is the one that comes with MAC OS X and is apparently quite a lot faster. We could try compiling the actual llvm and replacing the Julia calls with pow but maybe that is the subject for another blog post.

Just in case, “on-the-fly” compilation is obscuring runtime performance let’s try running both the Haskell and Julia for 20m, 40m, 80m and 100m steps.

Haskell

linreg([20,40,80,100],[2.0,4.0,7.9,10.1])
(-0.03000000000000025,0.1005)

Julia

linreg([20,40,80,100],[5.7,9.8,18.1,22.2])
(1.5600000000000005,0.2065)

Cleary the negative compilation time for Haskell is wrong but I think it’s fair to infer that Julia has a higher start up cost and Haskell is 2 times quicker but as noted above this may be because of different math libraries.

Colophon

I used shake to build some of the material “on the fly”. There are still some manual steps to producing the blog post. The code can be downloaded from github.

Advertisements

2 thoughts on “Haskell for Numerics?

  1. Thanks for the interesting comparison!

    On my Julia version the bottleneck was ^(3/2) operation at this line: “r = (q1^2 + q2^2) ^ (3/2)”.
    When I’ve replaced it by “r1 = (q1^2 + q2^2); r = r1*sqrt(r1)”, it became 5x faster.
    Apparently, Julia is not good yet at simplifying rational powers.

  2. Nor is GHC. I tried the same trick in Haskell and got

    real 0m3.116s
    user 0m2.852s
    sys 0m0.054s

    With Julia I got the same as you

    real 0m5.136s
    user 0m4.469s
    sys 0m0.498s

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s